Musculoskeletal

Musculoskeletal
THE CHALLENGE
THE RESEARCH
THE PROGRESS
TECHNICAL DATA


A | A | A
Musculoskeletal Videos
Squat-D125 Video

In an effort to prevent bone loss and muscle deconditioning normally associated with spaceflight, NASA has been developing and testing exercise devices. While data suggest that the Advanced Resistive Exercise Device (ARED) mitigates these losses on the International Space Station (ISS), ARED is far too large to use in a space vehicle designed for long duration exploration missions. As a result, NASA has been designing and testing compact devices with a goal of developing one that produces the same benefit as ARED. The High Eccentric Resistive Overload (HERO) device was the first in the series of compact devices to be built and tested. During testing, NASA engineers placed reflective markers on the subject to follow fixed location on his body as he exercised. They then processed those images into motion files Using the OpenSim (™) software package, they then used those data, in conduction with data on the force produced at the subject's feet, to quantify the force applied to the muscle and bone in the legs. This vide clip is from their actual OpenSim model.

  • ARED – Advanced Resistive Exercise Device

    DA – Digital Astronaut

    DAP – Digital Astronaut Project

    HERO – High Eccentric Resistive Overload device

    HULK – Hybrid Ultimate Lift Kit

    NASA – National Aeronautics and Space Administration

    NASA-STD – NASA Standard

    QCT – Quantitative Computed Tomography

    VIIP – Visual Impairment & Intracranial Pressure

    VIS – Vibration Isolation System

Musculoskeletal Images

X

Microgravity Countermeasures

How does 1/6-g and 3/8-g influence countermeasures?

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.
X

Efficient Exercise Regimen

Develop the most efficient exercise program for maintenance of muscle fitness.

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.
X

Minimum Exercise Needed?

What is the minimum exercise regimen needed to maintain fitness levels for tasks?

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.
X

Exercise Hardware

Identify and validate exploration hardware for maintenance of muscle fitness.

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.
X

Time Course of Changes in Muscle

Characterize the time course of changes in muscle protein turnover, muscle mass, and function during long duration space flight.

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.
X

Bone Health Standard

A new acceptable bone health standard using an expanded surrogate for bone health needs to be defined for the flight environment.

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.
X

Osteoporosis & Fractures

What is the incidence & prevalence of early onset osteoporosis or fragility fractures due to exposure to spaceflight.

Evidence from medical records, spaceflight operations and research findings provides the basis for identifying the most significant human risks in space exploration, including physiological and performance effects from hazards such as altered gravity, radiation, hostile/closed environments, isolation and distance. Each risk is assigned to an HRP Element (divisions of human research) to identify knowledge gaps, or the critical questions that must be answered, in order to mitigate the risk. These gaps become the focus of research conducted to reduce the likelihood and consequence of risks becoming a reality. To learn more about the Risk Identification and Mitigation process and the tasks developed to reduce those risks for the program please click on the link below the gap for more information.